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Prototype for memory effects in the time evolution of damage
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We introduce a one-dimensional cellular automaton as a prototype for memory effects on damage.
The associated Hamming distance as a function of time correctly mimics complex dynamical systems
and, for different values of the external parameters, gradually varies between a noiselike behavior and a

plateaulike one.

PACS number(s): 05.60.+w, 02.50.—r, 05.45.+b, 64.60.Ht

A large number of complex dynamical systems present
relevant quantities which behave, as functions of time, in
a more or less noiselike manner. Many electronic, optic,
acoustic-device, and meteorological phenomena, as well
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as various theoretical models, exhibit such behavior.
Among these models we can include the discrete sandpile
model [1], which presents self-organized criticality, as
well as other granular systems (e.g., clogging in granular
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FIG. 1. Time evolution of the Hamming distance for p =0.9 and L =30: (a) J =2 (plateaux exist); (b) J =30 (plateaux do not ex-

ist); (c) enlargement of a typical region of (b).
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material flowing in a pipe [2] or a continuous sandpile
model [3]). Various relevant quantities can be studied in
such models. One of them is the Hamming distance,
which characterizes a damage introduced in the system.
This type of situation is well illustrated on the discrete
sandpile model: the time evolution of a conveniently
defined Hamming distance has been recently studied by
Erzan and Sinha [4]. It presents a noiselike dependence
on time, expect for the (surprising) presence of abrupt
jumps between plateaux (see Fig. 1 of [4]), which indicate
the existence of some type of memory. The purpose of
the present work is to propose a simple prototype—a
one-dimensional deterministic cellular automaton—
which can exhibit a similar type of memory effect, in a
more or less distinct manner which can be tuned through
the external parameters.

Let us assume a semi-infinite linear chain of sites
(i=0,1,2,...) occupied by binary random variables
{S;} (S5;=0,1 Vi). We consider two equivalent replicas
of the system ({S;!} and {S?}) constructed as follows.
We conventionally assume S§ =1 (a= A4,B) and then set
S 1 =87 with probability p [hence different from S/
with probability (1—p)]. Although the value p is shared
by both strips, the random sequences used to generate the
actual strips are different. We now focus on a window of
length L and define the following Hamming distance:

| fotL—l

H(t)=—E 2

|SA—SB| , (1)
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where iy =Jt, J being a fixed positive integer and time
t=0,1,2,... . Let us stress that the present model can
be seen as a cellular automaton. Indeed, once the semi-
infinite chain configuration is frozen, we look at a win-
dow whose width always is L (i.e., L is the size of the cel-
lular automaton). The time evolution comes from the
fact that we start reading the L sites from a point i, of
the semi-infinite strip which linearly increases with time.

H (t) will clearly fluctuate, and the fluctuations are ex-
pected to decrease for increasing L. In Fig. 1 we present
two typical cases corresponding to L =30 (chosen, in this
illustration, to coincide with the linear size of the sample
used in [4]) and p =0.9; cases (a) and (b) respectively cor-
respond to small J (J =2) and large J (J =30). We verify
that our Fig. 1(a) is qualitatively similar to Fig. 1 of [4],
whereas Fig. 1(b) just exhibits trivial fluctuations. In Fig.
1(c) we have enlarged a typical region of Fig. 1(b) in order
to show that it does not look like a rescaled version of
Fig. 1(a).

Let us now quantitatively describe the H-vs-t graph. If
H(t +1)#H (1), there is no plateau at time ¢t (7=0); if
H(t+2)#H(t +1)=H/(t), we shall say that there is a
7=1 plateauw; if H(t+3)#H(t+2)=H(t+1)=H(1),
we shall say that the plateau is a 7=2 one, etc. For fixed
(p,J,L), H(t) yields a distribution P(7) associated with
the plateau [32 ,P(7)=1]; M(p,J,L)=1—P(0) is the
probability of having finite-size plateaux and, in some
sense, plays the role of an order parameter. We now
present the average M (p,J,L) as obtained through simu-

FIG. 2. (J,L) dependence of MV'J for
p =0.5. (a) full diagram; (b) fixed L cuts; (c)
fixed J cuts.
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FIG. 3. (J,L) dependence of MV'J for
p=0.9. (a) full diagram; (b) fixed L cuts; (c)

fixed J cuts.
(c)

T T T T T T T
0.6 b . 4

® J=10 - s ® L=20

a J=20 O L=40
s, v J=30 A A L. v =80 |
= B = h
2 0.2 4

i 1 o 1 1 A 1
0 ;o prs 60 80 08 5 10 15 20 25 .30

L J
lations in which we have performed about 1000 experi-  where the crossover value J*( p) satisfies J*(p)

ments, each of which run up to £ =1000 (or ¢t =5000 in
some cases): see Figs. 2 and 3 for typical examples.

We see that representing MV'J (instead of M) yields a
convenient data collapse. For fixed p, four different re-
gimes can be identified, namely, () J=~L=~1; (i)
J>L>1,(@Gii) J<J*(p) and L > 1, and (iv) J*(p)<J <L,
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FIG. 4. p dependence of K =lim;_, . M(p,J, o V7.

=J*(1—p) [e.g., J*(0.5)=2, J*(0.9)=J*(0.1) =~10,
and J*(1)=J*(0)=ow]. Memory disappears (i.e.,
M —0) for any value of L, and 0 <p <1 whenever J — .
In the thermodynamic limit L — o, only two regimes
subsist, namely, regime (iii) [J <J*(p)], where no scaling
exists for M, and regime (iv) [J>J*(p)], where
M =1/V'J. As intuitively expected, J*(p) monotonously
increases when p increases from 0.5 to 1; indeed, when p
approaches unity, memory persists for increasingly larger
values of J. In regime (iv), all transients have disap-
peared, and in Fig. 4 we show the p dependence of
K (p)=lim;_,  lim; M(p,J,L)VJ.

The analytical discussion of the p =1 case (full ran-
domness) is relatively simple in the limit L —oo. It
suffices, for a jump of size J, to consider the J initial sites
(vielding 2’ different configurations) and the J final sites
(vielding 2’ different configurations); indeed, the
configurations of the (L —2J) internal sites do not con-
tribute for M. So, the analysis of these 2/27=47
configurations leads to

J
>
M(0.5,0,00)="=7—, @)
hence
2J
M(0.5,J, )=$ ) 3)
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The use of Stirling’s formula immediately yields, in the
J — o limit,

1

M(0.5,0,e0)~ @)
hence
K(0.5)= lim M(0.5,J, 0 VT =— (5)
J— o0 ‘/7T

thus confirming the numerical result indicated in Fig. 4.
Let us conclude by recalling that a possibly large class

of systems exhibiting memory effects in the time evolu-

tion of a damage might belong to to the same “‘universali-

ty class” as that of the prototype we have herein intro-
duced. In any case, it could be so for the discrete sand-
pile model recently studied by Erzan and Sinha. In fact,
it would be interesting to study whether these two models
do or do not belong, in some sense, to the same class. As
further developments, it could be interesting to study the
momenta of P(7) [e.g., {7) =32 (7P(7)], as well as d-
dimensional versions of the present model.
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